import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
cust_df = pd.read_csv('dataset/santander/train_santander.csv', encoding = 'latin-1')
cust_df.head(3)
ID var3 var15 imp_ent_var16_ult1 imp_op_var39_comer_ult1 imp_op_var39_comer_ult3 imp_op_var40_comer_ult1 imp_op_var40_comer_ult3 imp_op_var40_efect_ult1 imp_op_var40_efect_ult3 ... saldo_medio_var33_hace2 saldo_medio_var33_hace3 saldo_medio_var33_ult1 saldo_medio_var33_ult3 saldo_medio_var44_hace2 saldo_medio_var44_hace3 saldo_medio_var44_ult1 saldo_medio_var44_ult3 var38 TARGET
0 1 2 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39205.17 0
1 3 2 34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49278.03 0
2 4 2 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67333.77 0

3 rows × 371 columns

cust_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 76020 entries, 0 to 76019
Columns: 371 entries, ID to TARGET
dtypes: float64(111), int64(260)
memory usage: 215.2 MB
cust_df.shape
(76020, 371)
print(cust_df['TARGET'].value_counts())
unsatisfied_cnt = cust_df[cust_df['TARGET'] == 1].TARGET.count()
total_cnt = cust_df.TARGET.count()
print('unsatisfied 비율 :', np.round(unsatisfied_cnt / total_cnt, 3))
0    73012
1     3008
Name: TARGET, dtype: int64
unsatisfied 비율 : 0.04
  • 불만족 비율은 전체의 4%에 불과하다.
cust_df.describe()
ID var3 var15 imp_ent_var16_ult1 imp_op_var39_comer_ult1 imp_op_var39_comer_ult3 imp_op_var40_comer_ult1 imp_op_var40_comer_ult3 imp_op_var40_efect_ult1 imp_op_var40_efect_ult3 ... saldo_medio_var33_hace2 saldo_medio_var33_hace3 saldo_medio_var33_ult1 saldo_medio_var33_ult3 saldo_medio_var44_hace2 saldo_medio_var44_hace3 saldo_medio_var44_ult1 saldo_medio_var44_ult3 var38 TARGET
count 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 ... 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 76020.000000 7.602000e+04 76020.000000
mean 75964.050723 -1523.199277 33.212865 86.208265 72.363067 119.529632 3.559130 6.472698 0.412946 0.567352 ... 7.935824 1.365146 12.215580 8.784074 31.505324 1.858575 76.026165 56.614351 1.172358e+05 0.039569
std 43781.947379 39033.462364 12.956486 1614.757313 339.315831 546.266294 93.155749 153.737066 30.604864 36.513513 ... 455.887218 113.959637 783.207399 538.439211 2013.125393 147.786584 4040.337842 2852.579397 1.826646e+05 0.194945
min 1.000000 -999999.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.163750e+03 0.000000
25% 38104.750000 2.000000 23.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.787061e+04 0.000000
50% 76043.000000 2.000000 28.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.064092e+05 0.000000
75% 113748.750000 2.000000 40.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.187563e+05 0.000000
max 151838.000000 238.000000 105.000000 210000.000000 12888.030000 21024.810000 8237.820000 11073.570000 6600.000000 6600.000000 ... 50003.880000 20385.720000 138831.630000 91778.730000 438329.220000 24650.010000 681462.900000 397884.300000 2.203474e+07 1.000000

8 rows × 371 columns

cust_df['var3'].replace(-999999, 2, inplace = True)
cust_df.drop('ID', axis = 1, inplace = True)

X_features = cust_df.iloc[:, :-1]
y_labels = cust_df.iloc[:, -1]
print('피쳐 데이터 shape :', X_features.shape)
피쳐 데이터 shape : (76020, 369)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_features, y_labels,
                                                    test_size = 0.2, random_state = 0)

train_cnt = y_train.count()
test_cnt = y_test.count()
print('학습 세트 Shape : {0}, 테스트 세트 Shape : {1}'.format(X_train.shape, X_test.shape))

print(' 학습 세트 레이블 값 분포 비율')
print(y_train.value_counts()/train_cnt)
print('\n 테스트 세트 레이블 값 분포 비율')
print(y_test.value_counts()/test_cnt)
학습 세트 Shape : (60816, 369), 테스트 세트 Shape : (15204, 369)
 학습 세트 레이블 값 분포 비율
0    0.960964
1    0.039036
Name: TARGET, dtype: float64

 테스트 세트 레이블 값 분포 비율
0    0.9583
1    0.0417
Name: TARGET, dtype: float64
X_tr, X_val, y_tr, y_val = train_test_split(X_train, y_train,
                                            test_size = 0.3, random_state = 0)
from xgboost import XGBClassifier
from sklearn.metrics import roc_auc_score

xgb_clf = XGBClassifier(n_estimators = 500, random_state = 156)

# 성능 평가 지표를 auc로, 조기 중단 파라미터는 100으로 설정하고 학습 수행
xgb_clf.fit(X_train, y_train, early_stopping_rounds = 100,
            eval_metric = 'logloss', eval_set = [(X_train, y_train), (X_test, y_test)])

xgb_roc_score = roc_auc_score(y_test, xgb_clf.predict_proba(X_test)[:, 1], average ='macro')
print('ROC AUC :', xgb_roc_score)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-logloss:0.47251	validation_1-logloss:0.47431
[1]	validation_0-logloss:0.35180	validation_1-logloss:0.35486
[2]	validation_0-logloss:0.27740	validation_1-logloss:0.28183
[3]	validation_0-logloss:0.22891	validation_1-logloss:0.23460
[4]	validation_0-logloss:0.19656	validation_1-logloss:0.20328
[5]	validation_0-logloss:0.17445	validation_1-logloss:0.18210
[6]	validation_0-logloss:0.15934	validation_1-logloss:0.16792
[7]	validation_0-logloss:0.14870	validation_1-logloss:0.15822
[8]	validation_0-logloss:0.14125	validation_1-logloss:0.15182
[9]	validation_0-logloss:0.13608	validation_1-logloss:0.14740
[10]	validation_0-logloss:0.13231	validation_1-logloss:0.14457
[11]	validation_0-logloss:0.12940	validation_1-logloss:0.14263
[12]	validation_0-logloss:0.12715	validation_1-logloss:0.14133
[13]	validation_0-logloss:0.12546	validation_1-logloss:0.14054
[14]	validation_0-logloss:0.12434	validation_1-logloss:0.14000
[15]	validation_0-logloss:0.12319	validation_1-logloss:0.13974
[16]	validation_0-logloss:0.12237	validation_1-logloss:0.13947
[17]	validation_0-logloss:0.12181	validation_1-logloss:0.13941
[18]	validation_0-logloss:0.12139	validation_1-logloss:0.13942
[19]	validation_0-logloss:0.12091	validation_1-logloss:0.13939
[20]	validation_0-logloss:0.12018	validation_1-logloss:0.13936
[21]	validation_0-logloss:0.11999	validation_1-logloss:0.13934
[22]	validation_0-logloss:0.11947	validation_1-logloss:0.13933
[23]	validation_0-logloss:0.11929	validation_1-logloss:0.13930
[24]	validation_0-logloss:0.11876	validation_1-logloss:0.13931
[25]	validation_0-logloss:0.11847	validation_1-logloss:0.13924
[26]	validation_0-logloss:0.11811	validation_1-logloss:0.13900
[27]	validation_0-logloss:0.11783	validation_1-logloss:0.13903
[28]	validation_0-logloss:0.11766	validation_1-logloss:0.13908
[29]	validation_0-logloss:0.11697	validation_1-logloss:0.13931
[30]	validation_0-logloss:0.11663	validation_1-logloss:0.13943
[31]	validation_0-logloss:0.11587	validation_1-logloss:0.13948
[32]	validation_0-logloss:0.11521	validation_1-logloss:0.13967
[33]	validation_0-logloss:0.11460	validation_1-logloss:0.13973
[34]	validation_0-logloss:0.11446	validation_1-logloss:0.13971
[35]	validation_0-logloss:0.11440	validation_1-logloss:0.13974
[36]	validation_0-logloss:0.11385	validation_1-logloss:0.13981
[37]	validation_0-logloss:0.11368	validation_1-logloss:0.13986
[38]	validation_0-logloss:0.11361	validation_1-logloss:0.13986
[39]	validation_0-logloss:0.11351	validation_1-logloss:0.13986
[40]	validation_0-logloss:0.11331	validation_1-logloss:0.13998
[41]	validation_0-logloss:0.11291	validation_1-logloss:0.14007
[42]	validation_0-logloss:0.11281	validation_1-logloss:0.14013
[43]	validation_0-logloss:0.11269	validation_1-logloss:0.14011
[44]	validation_0-logloss:0.11255	validation_1-logloss:0.14015
[45]	validation_0-logloss:0.11250	validation_1-logloss:0.14011
[46]	validation_0-logloss:0.11246	validation_1-logloss:0.14014
[47]	validation_0-logloss:0.11238	validation_1-logloss:0.14017
[48]	validation_0-logloss:0.11220	validation_1-logloss:0.14014
[49]	validation_0-logloss:0.11200	validation_1-logloss:0.14022
[50]	validation_0-logloss:0.11190	validation_1-logloss:0.14028
[51]	validation_0-logloss:0.11108	validation_1-logloss:0.14027
[52]	validation_0-logloss:0.11041	validation_1-logloss:0.14031
[53]	validation_0-logloss:0.10983	validation_1-logloss:0.14020
[54]	validation_0-logloss:0.10961	validation_1-logloss:0.14015
[55]	validation_0-logloss:0.10949	validation_1-logloss:0.14020
[56]	validation_0-logloss:0.10889	validation_1-logloss:0.14026
[57]	validation_0-logloss:0.10875	validation_1-logloss:0.14030
[58]	validation_0-logloss:0.10831	validation_1-logloss:0.14025
[59]	validation_0-logloss:0.10778	validation_1-logloss:0.14045
[60]	validation_0-logloss:0.10756	validation_1-logloss:0.14051
[61]	validation_0-logloss:0.10745	validation_1-logloss:0.14064
[62]	validation_0-logloss:0.10702	validation_1-logloss:0.14070
[63]	validation_0-logloss:0.10694	validation_1-logloss:0.14072
[64]	validation_0-logloss:0.10689	validation_1-logloss:0.14072
[65]	validation_0-logloss:0.10683	validation_1-logloss:0.14070
[66]	validation_0-logloss:0.10654	validation_1-logloss:0.14073
[67]	validation_0-logloss:0.10648	validation_1-logloss:0.14073
[68]	validation_0-logloss:0.10628	validation_1-logloss:0.14087
[69]	validation_0-logloss:0.10622	validation_1-logloss:0.14086
[70]	validation_0-logloss:0.10616	validation_1-logloss:0.14091
[71]	validation_0-logloss:0.10609	validation_1-logloss:0.14090
[72]	validation_0-logloss:0.10581	validation_1-logloss:0.14109
[73]	validation_0-logloss:0.10575	validation_1-logloss:0.14106
[74]	validation_0-logloss:0.10562	validation_1-logloss:0.14110
[75]	validation_0-logloss:0.10557	validation_1-logloss:0.14119
[76]	validation_0-logloss:0.10490	validation_1-logloss:0.14114
[77]	validation_0-logloss:0.10436	validation_1-logloss:0.14136
[78]	validation_0-logloss:0.10396	validation_1-logloss:0.14137
[79]	validation_0-logloss:0.10374	validation_1-logloss:0.14146
[80]	validation_0-logloss:0.10347	validation_1-logloss:0.14155
[81]	validation_0-logloss:0.10301	validation_1-logloss:0.14175
[82]	validation_0-logloss:0.10283	validation_1-logloss:0.14162
[83]	validation_0-logloss:0.10250	validation_1-logloss:0.14169
[84]	validation_0-logloss:0.10239	validation_1-logloss:0.14176
[85]	validation_0-logloss:0.10214	validation_1-logloss:0.14184
[86]	validation_0-logloss:0.10211	validation_1-logloss:0.14185
[87]	validation_0-logloss:0.10206	validation_1-logloss:0.14185
[88]	validation_0-logloss:0.10188	validation_1-logloss:0.14194
[89]	validation_0-logloss:0.10178	validation_1-logloss:0.14200
[90]	validation_0-logloss:0.10174	validation_1-logloss:0.14204
[91]	validation_0-logloss:0.10162	validation_1-logloss:0.14209
[92]	validation_0-logloss:0.10159	validation_1-logloss:0.14209
[93]	validation_0-logloss:0.10122	validation_1-logloss:0.14221
[94]	validation_0-logloss:0.10118	validation_1-logloss:0.14222
[95]	validation_0-logloss:0.10113	validation_1-logloss:0.14231
[96]	validation_0-logloss:0.10082	validation_1-logloss:0.14250
[97]	validation_0-logloss:0.10077	validation_1-logloss:0.14253
[98]	validation_0-logloss:0.10035	validation_1-logloss:0.14265
[99]	validation_0-logloss:0.09991	validation_1-logloss:0.14271
[100]	validation_0-logloss:0.09964	validation_1-logloss:0.14277
[101]	validation_0-logloss:0.09931	validation_1-logloss:0.14291
[102]	validation_0-logloss:0.09928	validation_1-logloss:0.14291
[103]	validation_0-logloss:0.09885	validation_1-logloss:0.14307
[104]	validation_0-logloss:0.09873	validation_1-logloss:0.14323
[105]	validation_0-logloss:0.09853	validation_1-logloss:0.14331
[106]	validation_0-logloss:0.09799	validation_1-logloss:0.14359
[107]	validation_0-logloss:0.09796	validation_1-logloss:0.14366
[108]	validation_0-logloss:0.09782	validation_1-logloss:0.14385
[109]	validation_0-logloss:0.09776	validation_1-logloss:0.14388
[110]	validation_0-logloss:0.09756	validation_1-logloss:0.14400
[111]	validation_0-logloss:0.09752	validation_1-logloss:0.14398
[112]	validation_0-logloss:0.09728	validation_1-logloss:0.14405
[113]	validation_0-logloss:0.09701	validation_1-logloss:0.14429
[114]	validation_0-logloss:0.09689	validation_1-logloss:0.14426
[115]	validation_0-logloss:0.09668	validation_1-logloss:0.14434
[116]	validation_0-logloss:0.09663	validation_1-logloss:0.14439
[117]	validation_0-logloss:0.09649	validation_1-logloss:0.14446
[118]	validation_0-logloss:0.09641	validation_1-logloss:0.14450
[119]	validation_0-logloss:0.09613	validation_1-logloss:0.14447
[120]	validation_0-logloss:0.09606	validation_1-logloss:0.14455
[121]	validation_0-logloss:0.09593	validation_1-logloss:0.14451
[122]	validation_0-logloss:0.09566	validation_1-logloss:0.14469
[123]	validation_0-logloss:0.09547	validation_1-logloss:0.14479
[124]	validation_0-logloss:0.09542	validation_1-logloss:0.14476
[125]	validation_0-logloss:0.09524	validation_1-logloss:0.14471
ROC AUC : 0.8410117370942843
from sklearn.model_selection import GridSearchCV

# 하이퍼 파라미터 테스트의 수행 속도를 향상시키기 위해 n_estimators를 100으로 감소
xgb_clf = XGBClassifier(n_estimators = 100)

params = {'max_depth':[5,7],
          'min_child_weight':[1,3],
          'colsample_bytree':[0.5, 0.75]
         }

gridcv = GridSearchCV(xgb_clf, param_grid=params, cv = 3) # 2*2*2*3
gridcv.fit(X_train, y_train, early_stopping_rounds = 30, eval_metric = 'auc', eval_set=[(X_tr, y_tr), (X_val, y_val)])

print('GridSearchCV 최적 파라미터:', gridcv.best_params_)

xgb_rod_score = roc_auc_score(y_test, gridcv.predict_proba(X_test)[:, 1], average = 'macro')
print('ROC AUC :', xgb_roc_score)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.79161	validation_1-auc:0.79321
[1]	validation_0-auc:0.81865	validation_1-auc:0.81375
[2]	validation_0-auc:0.82586	validation_1-auc:0.81846
[3]	validation_0-auc:0.82789	validation_1-auc:0.82226
[4]	validation_0-auc:0.83249	validation_1-auc:0.82677
[5]	validation_0-auc:0.83477	validation_1-auc:0.83225
[6]	validation_0-auc:0.83340	validation_1-auc:0.82654
[7]	validation_0-auc:0.84223	validation_1-auc:0.83486
[8]	validation_0-auc:0.84586	validation_1-auc:0.83682
[9]	validation_0-auc:0.84557	validation_1-auc:0.83472
[10]	validation_0-auc:0.84423	validation_1-auc:0.83181
[11]	validation_0-auc:0.84428	validation_1-auc:0.82920
[12]	validation_0-auc:0.85176	validation_1-auc:0.83433
[13]	validation_0-auc:0.85540	validation_1-auc:0.83565
[14]	validation_0-auc:0.85718	validation_1-auc:0.83696
[15]	validation_0-auc:0.85851	validation_1-auc:0.83561
[16]	validation_0-auc:0.85964	validation_1-auc:0.83578
[17]	validation_0-auc:0.86091	validation_1-auc:0.83570
[18]	validation_0-auc:0.86188	validation_1-auc:0.83595
[19]	validation_0-auc:0.86249	validation_1-auc:0.83552
[20]	validation_0-auc:0.86298	validation_1-auc:0.83452
[21]	validation_0-auc:0.86375	validation_1-auc:0.83437
[22]	validation_0-auc:0.86440	validation_1-auc:0.83516
[23]	validation_0-auc:0.86554	validation_1-auc:0.83470
[24]	validation_0-auc:0.86601	validation_1-auc:0.83492
[25]	validation_0-auc:0.86700	validation_1-auc:0.83510
[26]	validation_0-auc:0.86770	validation_1-auc:0.83412
[27]	validation_0-auc:0.86852	validation_1-auc:0.83394
[28]	validation_0-auc:0.86898	validation_1-auc:0.83441
[29]	validation_0-auc:0.86914	validation_1-auc:0.83440
[30]	validation_0-auc:0.86953	validation_1-auc:0.83380
[31]	validation_0-auc:0.87051	validation_1-auc:0.83346
[32]	validation_0-auc:0.87085	validation_1-auc:0.83334
[33]	validation_0-auc:0.87112	validation_1-auc:0.83313
[34]	validation_0-auc:0.87161	validation_1-auc:0.83383
[35]	validation_0-auc:0.87173	validation_1-auc:0.83376
[36]	validation_0-auc:0.87260	validation_1-auc:0.83340
[37]	validation_0-auc:0.87310	validation_1-auc:0.83344
[38]	validation_0-auc:0.87322	validation_1-auc:0.83343
[39]	validation_0-auc:0.87339	validation_1-auc:0.83370
[40]	validation_0-auc:0.87351	validation_1-auc:0.83373
[41]	validation_0-auc:0.87411	validation_1-auc:0.83358
[42]	validation_0-auc:0.87433	validation_1-auc:0.83325
[43]	validation_0-auc:0.87432	validation_1-auc:0.83319
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80013	validation_1-auc:0.79685
[1]	validation_0-auc:0.82084	validation_1-auc:0.81574
[2]	validation_0-auc:0.82744	validation_1-auc:0.82189
[3]	validation_0-auc:0.83029	validation_1-auc:0.82317
[4]	validation_0-auc:0.83578	validation_1-auc:0.82564
[5]	validation_0-auc:0.83777	validation_1-auc:0.83385
[6]	validation_0-auc:0.83742	validation_1-auc:0.83162
[7]	validation_0-auc:0.84373	validation_1-auc:0.83436
[8]	validation_0-auc:0.84836	validation_1-auc:0.83664
[9]	validation_0-auc:0.84790	validation_1-auc:0.83583
[10]	validation_0-auc:0.84717	validation_1-auc:0.83268
[11]	validation_0-auc:0.84654	validation_1-auc:0.83066
[12]	validation_0-auc:0.85377	validation_1-auc:0.83579
[13]	validation_0-auc:0.85800	validation_1-auc:0.83859
[14]	validation_0-auc:0.85962	validation_1-auc:0.83984
[15]	validation_0-auc:0.86143	validation_1-auc:0.84003
[16]	validation_0-auc:0.86269	validation_1-auc:0.84049
[17]	validation_0-auc:0.86399	validation_1-auc:0.84009
[18]	validation_0-auc:0.86474	validation_1-auc:0.84034
[19]	validation_0-auc:0.86662	validation_1-auc:0.84138
[20]	validation_0-auc:0.86730	validation_1-auc:0.84100
[21]	validation_0-auc:0.86821	validation_1-auc:0.84058
[22]	validation_0-auc:0.86942	validation_1-auc:0.84128
[23]	validation_0-auc:0.86992	validation_1-auc:0.84122
[24]	validation_0-auc:0.87035	validation_1-auc:0.84116
[25]	validation_0-auc:0.87091	validation_1-auc:0.84045
[26]	validation_0-auc:0.87139	validation_1-auc:0.83974
[27]	validation_0-auc:0.87296	validation_1-auc:0.83926
[28]	validation_0-auc:0.87307	validation_1-auc:0.83943
[29]	validation_0-auc:0.87330	validation_1-auc:0.84017
[30]	validation_0-auc:0.87443	validation_1-auc:0.83949
[31]	validation_0-auc:0.87467	validation_1-auc:0.83936
[32]	validation_0-auc:0.87513	validation_1-auc:0.83943
[33]	validation_0-auc:0.87519	validation_1-auc:0.83951
[34]	validation_0-auc:0.87542	validation_1-auc:0.83953
[35]	validation_0-auc:0.87552	validation_1-auc:0.83946
[36]	validation_0-auc:0.87582	validation_1-auc:0.83936
[37]	validation_0-auc:0.87604	validation_1-auc:0.83919
[38]	validation_0-auc:0.87622	validation_1-auc:0.83874
[39]	validation_0-auc:0.87670	validation_1-auc:0.83844
[40]	validation_0-auc:0.87678	validation_1-auc:0.83859
[41]	validation_0-auc:0.87711	validation_1-auc:0.83830
[42]	validation_0-auc:0.87738	validation_1-auc:0.83823
[43]	validation_0-auc:0.87752	validation_1-auc:0.83796
[44]	validation_0-auc:0.87777	validation_1-auc:0.83765
[45]	validation_0-auc:0.87785	validation_1-auc:0.83786
[46]	validation_0-auc:0.87802	validation_1-auc:0.83761
[47]	validation_0-auc:0.87840	validation_1-auc:0.83698
[48]	validation_0-auc:0.87868	validation_1-auc:0.83699
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80039	validation_1-auc:0.80013
[1]	validation_0-auc:0.82111	validation_1-auc:0.82026
[2]	validation_0-auc:0.82749	validation_1-auc:0.82627
[3]	validation_0-auc:0.83124	validation_1-auc:0.82830
[4]	validation_0-auc:0.83475	validation_1-auc:0.82881
[5]	validation_0-auc:0.83676	validation_1-auc:0.83385
[6]	validation_0-auc:0.83648	validation_1-auc:0.83085
[7]	validation_0-auc:0.84336	validation_1-auc:0.83472
[8]	validation_0-auc:0.84624	validation_1-auc:0.83404
[9]	validation_0-auc:0.84541	validation_1-auc:0.83287
[10]	validation_0-auc:0.84554	validation_1-auc:0.83039
[11]	validation_0-auc:0.84525	validation_1-auc:0.82995
[12]	validation_0-auc:0.85144	validation_1-auc:0.83489
[13]	validation_0-auc:0.85525	validation_1-auc:0.83803
[14]	validation_0-auc:0.85745	validation_1-auc:0.84145
[15]	validation_0-auc:0.85817	validation_1-auc:0.84082
[16]	validation_0-auc:0.86006	validation_1-auc:0.84076
[17]	validation_0-auc:0.86127	validation_1-auc:0.84139
[18]	validation_0-auc:0.86194	validation_1-auc:0.84041
[19]	validation_0-auc:0.86337	validation_1-auc:0.84100
[20]	validation_0-auc:0.86386	validation_1-auc:0.84145
[21]	validation_0-auc:0.86550	validation_1-auc:0.84030
[22]	validation_0-auc:0.86690	validation_1-auc:0.84072
[23]	validation_0-auc:0.86765	validation_1-auc:0.84077
[24]	validation_0-auc:0.86827	validation_1-auc:0.84136
[25]	validation_0-auc:0.86939	validation_1-auc:0.84120
[26]	validation_0-auc:0.87045	validation_1-auc:0.84098
[27]	validation_0-auc:0.87062	validation_1-auc:0.84148
[28]	validation_0-auc:0.87072	validation_1-auc:0.84120
[29]	validation_0-auc:0.87113	validation_1-auc:0.84147
[30]	validation_0-auc:0.87115	validation_1-auc:0.84181
[31]	validation_0-auc:0.87145	validation_1-auc:0.84172
[32]	validation_0-auc:0.87226	validation_1-auc:0.84100
[33]	validation_0-auc:0.87242	validation_1-auc:0.84149
[34]	validation_0-auc:0.87255	validation_1-auc:0.84120
[35]	validation_0-auc:0.87297	validation_1-auc:0.84095
[36]	validation_0-auc:0.87348	validation_1-auc:0.84051
[37]	validation_0-auc:0.87395	validation_1-auc:0.84084
[38]	validation_0-auc:0.87433	validation_1-auc:0.84055
[39]	validation_0-auc:0.87448	validation_1-auc:0.84048
[40]	validation_0-auc:0.87465	validation_1-auc:0.84042
[41]	validation_0-auc:0.87486	validation_1-auc:0.84034
[42]	validation_0-auc:0.87518	validation_1-auc:0.84021
[43]	validation_0-auc:0.87525	validation_1-auc:0.84022
[44]	validation_0-auc:0.87595	validation_1-auc:0.83967
[45]	validation_0-auc:0.87629	validation_1-auc:0.84004
[46]	validation_0-auc:0.87704	validation_1-auc:0.83966
[47]	validation_0-auc:0.87746	validation_1-auc:0.83963
[48]	validation_0-auc:0.87774	validation_1-auc:0.83931
[49]	validation_0-auc:0.87784	validation_1-auc:0.83925
[50]	validation_0-auc:0.87826	validation_1-auc:0.83935
[51]	validation_0-auc:0.87861	validation_1-auc:0.83920
[52]	validation_0-auc:0.87950	validation_1-auc:0.83895
[53]	validation_0-auc:0.88024	validation_1-auc:0.83876
[54]	validation_0-auc:0.88117	validation_1-auc:0.83840
[55]	validation_0-auc:0.88126	validation_1-auc:0.83834
[56]	validation_0-auc:0.88145	validation_1-auc:0.83873
[57]	validation_0-auc:0.88157	validation_1-auc:0.83860
[58]	validation_0-auc:0.88178	validation_1-auc:0.83810
[59]	validation_0-auc:0.88186	validation_1-auc:0.83774
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.79210	validation_1-auc:0.79292
[1]	validation_0-auc:0.81759	validation_1-auc:0.81404
[2]	validation_0-auc:0.82567	validation_1-auc:0.81864
[3]	validation_0-auc:0.82819	validation_1-auc:0.82244
[4]	validation_0-auc:0.83233	validation_1-auc:0.82618
[5]	validation_0-auc:0.83480	validation_1-auc:0.83163
[6]	validation_0-auc:0.83342	validation_1-auc:0.82840
[7]	validation_0-auc:0.84265	validation_1-auc:0.83512
[8]	validation_0-auc:0.84614	validation_1-auc:0.83742
[9]	validation_0-auc:0.84573	validation_1-auc:0.83475
[10]	validation_0-auc:0.84426	validation_1-auc:0.83066
[11]	validation_0-auc:0.84358	validation_1-auc:0.82937
[12]	validation_0-auc:0.85089	validation_1-auc:0.83491
[13]	validation_0-auc:0.85457	validation_1-auc:0.83785
[14]	validation_0-auc:0.85645	validation_1-auc:0.83894
[15]	validation_0-auc:0.85744	validation_1-auc:0.83784
[16]	validation_0-auc:0.85870	validation_1-auc:0.83899
[17]	validation_0-auc:0.86002	validation_1-auc:0.83854
[18]	validation_0-auc:0.86091	validation_1-auc:0.83860
[19]	validation_0-auc:0.86154	validation_1-auc:0.83818
[20]	validation_0-auc:0.86189	validation_1-auc:0.83772
[21]	validation_0-auc:0.86295	validation_1-auc:0.83703
[22]	validation_0-auc:0.86334	validation_1-auc:0.83721
[23]	validation_0-auc:0.86402	validation_1-auc:0.83581
[24]	validation_0-auc:0.86456	validation_1-auc:0.83557
[25]	validation_0-auc:0.86494	validation_1-auc:0.83534
[26]	validation_0-auc:0.86516	validation_1-auc:0.83481
[27]	validation_0-auc:0.86660	validation_1-auc:0.83557
[28]	validation_0-auc:0.86784	validation_1-auc:0.83546
[29]	validation_0-auc:0.86793	validation_1-auc:0.83545
[30]	validation_0-auc:0.86840	validation_1-auc:0.83496
[31]	validation_0-auc:0.86867	validation_1-auc:0.83481
[32]	validation_0-auc:0.86884	validation_1-auc:0.83472
[33]	validation_0-auc:0.86900	validation_1-auc:0.83482
[34]	validation_0-auc:0.86907	validation_1-auc:0.83423
[35]	validation_0-auc:0.86981	validation_1-auc:0.83350
[36]	validation_0-auc:0.86996	validation_1-auc:0.83334
[37]	validation_0-auc:0.87004	validation_1-auc:0.83365
[38]	validation_0-auc:0.87022	validation_1-auc:0.83384
[39]	validation_0-auc:0.87078	validation_1-auc:0.83373
[40]	validation_0-auc:0.87094	validation_1-auc:0.83373
[41]	validation_0-auc:0.87109	validation_1-auc:0.83359
[42]	validation_0-auc:0.87173	validation_1-auc:0.83365
[43]	validation_0-auc:0.87264	validation_1-auc:0.83386
[44]	validation_0-auc:0.87336	validation_1-auc:0.83319
[45]	validation_0-auc:0.87361	validation_1-auc:0.83318
[46]	validation_0-auc:0.87406	validation_1-auc:0.83227
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.79931	validation_1-auc:0.79594
[1]	validation_0-auc:0.81987	validation_1-auc:0.81503
[2]	validation_0-auc:0.82734	validation_1-auc:0.82126
[3]	validation_0-auc:0.83110	validation_1-auc:0.82302
[4]	validation_0-auc:0.83608	validation_1-auc:0.82494
[5]	validation_0-auc:0.83914	validation_1-auc:0.83100
[6]	validation_0-auc:0.83828	validation_1-auc:0.82999
[7]	validation_0-auc:0.84425	validation_1-auc:0.83439
[8]	validation_0-auc:0.84749	validation_1-auc:0.83609
[9]	validation_0-auc:0.84727	validation_1-auc:0.83597
[10]	validation_0-auc:0.84703	validation_1-auc:0.83250
[11]	validation_0-auc:0.84664	validation_1-auc:0.83237
[12]	validation_0-auc:0.85343	validation_1-auc:0.83713
[13]	validation_0-auc:0.85671	validation_1-auc:0.83887
[14]	validation_0-auc:0.85824	validation_1-auc:0.83919
[15]	validation_0-auc:0.85962	validation_1-auc:0.83905
[16]	validation_0-auc:0.86089	validation_1-auc:0.84031
[17]	validation_0-auc:0.86216	validation_1-auc:0.84051
[18]	validation_0-auc:0.86264	validation_1-auc:0.84051
[19]	validation_0-auc:0.86341	validation_1-auc:0.84030
[20]	validation_0-auc:0.86379	validation_1-auc:0.83988
[21]	validation_0-auc:0.86413	validation_1-auc:0.84020
[22]	validation_0-auc:0.86513	validation_1-auc:0.84033
[23]	validation_0-auc:0.86584	validation_1-auc:0.84016
[24]	validation_0-auc:0.86638	validation_1-auc:0.84016
[25]	validation_0-auc:0.86691	validation_1-auc:0.83991
[26]	validation_0-auc:0.86798	validation_1-auc:0.83979
[27]	validation_0-auc:0.86869	validation_1-auc:0.83952
[28]	validation_0-auc:0.86881	validation_1-auc:0.83942
[29]	validation_0-auc:0.86908	validation_1-auc:0.83912
[30]	validation_0-auc:0.86934	validation_1-auc:0.83907
[31]	validation_0-auc:0.86942	validation_1-auc:0.83896
[32]	validation_0-auc:0.87000	validation_1-auc:0.83860
[33]	validation_0-auc:0.87016	validation_1-auc:0.83878
[34]	validation_0-auc:0.87050	validation_1-auc:0.83830
[35]	validation_0-auc:0.87069	validation_1-auc:0.83825
[36]	validation_0-auc:0.87118	validation_1-auc:0.83880
[37]	validation_0-auc:0.87126	validation_1-auc:0.83883
[38]	validation_0-auc:0.87138	validation_1-auc:0.83882
[39]	validation_0-auc:0.87243	validation_1-auc:0.83833
[40]	validation_0-auc:0.87267	validation_1-auc:0.83813
[41]	validation_0-auc:0.87282	validation_1-auc:0.83811
[42]	validation_0-auc:0.87356	validation_1-auc:0.83806
[43]	validation_0-auc:0.87372	validation_1-auc:0.83815
[44]	validation_0-auc:0.87384	validation_1-auc:0.83807
[45]	validation_0-auc:0.87395	validation_1-auc:0.83813
[46]	validation_0-auc:0.87450	validation_1-auc:0.83757
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80248	validation_1-auc:0.80001
[1]	validation_0-auc:0.82249	validation_1-auc:0.81765
[2]	validation_0-auc:0.82833	validation_1-auc:0.82524
[3]	validation_0-auc:0.83371	validation_1-auc:0.82814
[4]	validation_0-auc:0.83653	validation_1-auc:0.82856
[5]	validation_0-auc:0.83838	validation_1-auc:0.83345
[6]	validation_0-auc:0.83823	validation_1-auc:0.83165
[7]	validation_0-auc:0.84386	validation_1-auc:0.83505
[8]	validation_0-auc:0.84688	validation_1-auc:0.83507
[9]	validation_0-auc:0.84634	validation_1-auc:0.83483
[10]	validation_0-auc:0.84564	validation_1-auc:0.83324
[11]	validation_0-auc:0.84501	validation_1-auc:0.83283
[12]	validation_0-auc:0.85011	validation_1-auc:0.83693
[13]	validation_0-auc:0.85299	validation_1-auc:0.83995
[14]	validation_0-auc:0.85523	validation_1-auc:0.84250
[15]	validation_0-auc:0.85608	validation_1-auc:0.84183
[16]	validation_0-auc:0.85748	validation_1-auc:0.84319
[17]	validation_0-auc:0.85895	validation_1-auc:0.84363
[18]	validation_0-auc:0.85944	validation_1-auc:0.84311
[19]	validation_0-auc:0.86102	validation_1-auc:0.84368
[20]	validation_0-auc:0.86122	validation_1-auc:0.84367
[21]	validation_0-auc:0.86196	validation_1-auc:0.84403
[22]	validation_0-auc:0.86291	validation_1-auc:0.84498
[23]	validation_0-auc:0.86385	validation_1-auc:0.84460
[24]	validation_0-auc:0.86452	validation_1-auc:0.84460
[25]	validation_0-auc:0.86534	validation_1-auc:0.84480
[26]	validation_0-auc:0.86584	validation_1-auc:0.84441
[27]	validation_0-auc:0.86653	validation_1-auc:0.84401
[28]	validation_0-auc:0.86697	validation_1-auc:0.84422
[29]	validation_0-auc:0.86770	validation_1-auc:0.84385
[30]	validation_0-auc:0.86777	validation_1-auc:0.84407
[31]	validation_0-auc:0.86803	validation_1-auc:0.84395
[32]	validation_0-auc:0.86826	validation_1-auc:0.84381
[33]	validation_0-auc:0.86862	validation_1-auc:0.84417
[34]	validation_0-auc:0.86902	validation_1-auc:0.84385
[35]	validation_0-auc:0.86959	validation_1-auc:0.84369
[36]	validation_0-auc:0.87020	validation_1-auc:0.84297
[37]	validation_0-auc:0.87047	validation_1-auc:0.84278
[38]	validation_0-auc:0.87175	validation_1-auc:0.84286
[39]	validation_0-auc:0.87269	validation_1-auc:0.84224
[40]	validation_0-auc:0.87289	validation_1-auc:0.84197
[41]	validation_0-auc:0.87294	validation_1-auc:0.84175
[42]	validation_0-auc:0.87418	validation_1-auc:0.84148
[43]	validation_0-auc:0.87431	validation_1-auc:0.84121
[44]	validation_0-auc:0.87441	validation_1-auc:0.84127
[45]	validation_0-auc:0.87458	validation_1-auc:0.84103
[46]	validation_0-auc:0.87475	validation_1-auc:0.84119
[47]	validation_0-auc:0.87529	validation_1-auc:0.84128
[48]	validation_0-auc:0.87554	validation_1-auc:0.84050
[49]	validation_0-auc:0.87572	validation_1-auc:0.84039
[50]	validation_0-auc:0.87575	validation_1-auc:0.84062
[51]	validation_0-auc:0.87605	validation_1-auc:0.84105
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80843	validation_1-auc:0.80885
[1]	validation_0-auc:0.82920	validation_1-auc:0.82211
[2]	validation_0-auc:0.83320	validation_1-auc:0.82400
[3]	validation_0-auc:0.83625	validation_1-auc:0.82577
[4]	validation_0-auc:0.84188	validation_1-auc:0.82897
[5]	validation_0-auc:0.84455	validation_1-auc:0.83377
[6]	validation_0-auc:0.84503	validation_1-auc:0.82916
[7]	validation_0-auc:0.85319	validation_1-auc:0.83364
[8]	validation_0-auc:0.85976	validation_1-auc:0.83390
[9]	validation_0-auc:0.85952	validation_1-auc:0.82834
[10]	validation_0-auc:0.85919	validation_1-auc:0.82378
[11]	validation_0-auc:0.85956	validation_1-auc:0.82400
[12]	validation_0-auc:0.86574	validation_1-auc:0.82888
[13]	validation_0-auc:0.87027	validation_1-auc:0.83251
[14]	validation_0-auc:0.87240	validation_1-auc:0.83311
[15]	validation_0-auc:0.87365	validation_1-auc:0.83080
[16]	validation_0-auc:0.87567	validation_1-auc:0.83134
[17]	validation_0-auc:0.87777	validation_1-auc:0.83255
[18]	validation_0-auc:0.87904	validation_1-auc:0.83149
[19]	validation_0-auc:0.88037	validation_1-auc:0.83083
[20]	validation_0-auc:0.88104	validation_1-auc:0.82964
[21]	validation_0-auc:0.88159	validation_1-auc:0.82802
[22]	validation_0-auc:0.88227	validation_1-auc:0.82806
[23]	validation_0-auc:0.88255	validation_1-auc:0.82806
[24]	validation_0-auc:0.88328	validation_1-auc:0.82840
[25]	validation_0-auc:0.88353	validation_1-auc:0.82851
[26]	validation_0-auc:0.88384	validation_1-auc:0.82899
[27]	validation_0-auc:0.88509	validation_1-auc:0.82988
[28]	validation_0-auc:0.88544	validation_1-auc:0.82886
[29]	validation_0-auc:0.88569	validation_1-auc:0.82922
[30]	validation_0-auc:0.88588	validation_1-auc:0.82962
[31]	validation_0-auc:0.88682	validation_1-auc:0.82951
[32]	validation_0-auc:0.88752	validation_1-auc:0.82858
[33]	validation_0-auc:0.88762	validation_1-auc:0.82843
[34]	validation_0-auc:0.88792	validation_1-auc:0.82804
[35]	validation_0-auc:0.88865	validation_1-auc:0.82692
[36]	validation_0-auc:0.88868	validation_1-auc:0.82609
[37]	validation_0-auc:0.88901	validation_1-auc:0.82607
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81304	validation_1-auc:0.81746
[1]	validation_0-auc:0.82882	validation_1-auc:0.82026
[2]	validation_0-auc:0.83609	validation_1-auc:0.82474
[3]	validation_0-auc:0.84041	validation_1-auc:0.82824
[4]	validation_0-auc:0.84760	validation_1-auc:0.83130
[5]	validation_0-auc:0.84938	validation_1-auc:0.83590
[6]	validation_0-auc:0.85116	validation_1-auc:0.83167
[7]	validation_0-auc:0.85828	validation_1-auc:0.83471
[8]	validation_0-auc:0.86371	validation_1-auc:0.83640
[9]	validation_0-auc:0.86365	validation_1-auc:0.83549
[10]	validation_0-auc:0.86395	validation_1-auc:0.83127
[11]	validation_0-auc:0.86437	validation_1-auc:0.82983
[12]	validation_0-auc:0.87068	validation_1-auc:0.83421
[13]	validation_0-auc:0.87545	validation_1-auc:0.83773
[14]	validation_0-auc:0.87779	validation_1-auc:0.83843
[15]	validation_0-auc:0.87893	validation_1-auc:0.83628
[16]	validation_0-auc:0.88035	validation_1-auc:0.83878
[17]	validation_0-auc:0.88227	validation_1-auc:0.83749
[18]	validation_0-auc:0.88364	validation_1-auc:0.83710
[19]	validation_0-auc:0.88528	validation_1-auc:0.83727
[20]	validation_0-auc:0.88606	validation_1-auc:0.83670
[21]	validation_0-auc:0.88672	validation_1-auc:0.83629
[22]	validation_0-auc:0.88793	validation_1-auc:0.83586
[23]	validation_0-auc:0.88875	validation_1-auc:0.83562
[24]	validation_0-auc:0.88913	validation_1-auc:0.83589
[25]	validation_0-auc:0.88932	validation_1-auc:0.83575
[26]	validation_0-auc:0.89053	validation_1-auc:0.83424
[27]	validation_0-auc:0.89116	validation_1-auc:0.83427
[28]	validation_0-auc:0.89172	validation_1-auc:0.83384
[29]	validation_0-auc:0.89244	validation_1-auc:0.83318
[30]	validation_0-auc:0.89260	validation_1-auc:0.83224
[31]	validation_0-auc:0.89294	validation_1-auc:0.83214
[32]	validation_0-auc:0.89361	validation_1-auc:0.83111
[33]	validation_0-auc:0.89396	validation_1-auc:0.83114
[34]	validation_0-auc:0.89481	validation_1-auc:0.83121
[35]	validation_0-auc:0.89548	validation_1-auc:0.83133
[36]	validation_0-auc:0.89589	validation_1-auc:0.83039
[37]	validation_0-auc:0.89614	validation_1-auc:0.83024
[38]	validation_0-auc:0.89743	validation_1-auc:0.82952
[39]	validation_0-auc:0.89749	validation_1-auc:0.82950
[40]	validation_0-auc:0.89754	validation_1-auc:0.82932
[41]	validation_0-auc:0.89813	validation_1-auc:0.82838
[42]	validation_0-auc:0.89831	validation_1-auc:0.82849
[43]	validation_0-auc:0.89841	validation_1-auc:0.82827
[44]	validation_0-auc:0.89908	validation_1-auc:0.82824
[45]	validation_0-auc:0.89919	validation_1-auc:0.82788
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81393	validation_1-auc:0.81377
[1]	validation_0-auc:0.82962	validation_1-auc:0.82668
[2]	validation_0-auc:0.83724	validation_1-auc:0.83017
[3]	validation_0-auc:0.84075	validation_1-auc:0.83079
[4]	validation_0-auc:0.84691	validation_1-auc:0.83337
[5]	validation_0-auc:0.84896	validation_1-auc:0.83502
[6]	validation_0-auc:0.84980	validation_1-auc:0.82858
[7]	validation_0-auc:0.85918	validation_1-auc:0.83358
[8]	validation_0-auc:0.86284	validation_1-auc:0.83470
[9]	validation_0-auc:0.86365	validation_1-auc:0.83427
[10]	validation_0-auc:0.86243	validation_1-auc:0.83264
[11]	validation_0-auc:0.86248	validation_1-auc:0.83255
[12]	validation_0-auc:0.86969	validation_1-auc:0.83531
[13]	validation_0-auc:0.87452	validation_1-auc:0.83774
[14]	validation_0-auc:0.87630	validation_1-auc:0.83936
[15]	validation_0-auc:0.87826	validation_1-auc:0.83676
[16]	validation_0-auc:0.87988	validation_1-auc:0.83852
[17]	validation_0-auc:0.88289	validation_1-auc:0.83811
[18]	validation_0-auc:0.88333	validation_1-auc:0.83735
[19]	validation_0-auc:0.88506	validation_1-auc:0.83720
[20]	validation_0-auc:0.88528	validation_1-auc:0.83718
[21]	validation_0-auc:0.88547	validation_1-auc:0.83646
[22]	validation_0-auc:0.88632	validation_1-auc:0.83706
[23]	validation_0-auc:0.88770	validation_1-auc:0.83714
[24]	validation_0-auc:0.88867	validation_1-auc:0.83742
[25]	validation_0-auc:0.88905	validation_1-auc:0.83753
[26]	validation_0-auc:0.89065	validation_1-auc:0.83634
[27]	validation_0-auc:0.89158	validation_1-auc:0.83565
[28]	validation_0-auc:0.89214	validation_1-auc:0.83460
[29]	validation_0-auc:0.89345	validation_1-auc:0.83413
[30]	validation_0-auc:0.89377	validation_1-auc:0.83373
[31]	validation_0-auc:0.89392	validation_1-auc:0.83396
[32]	validation_0-auc:0.89410	validation_1-auc:0.83435
[33]	validation_0-auc:0.89416	validation_1-auc:0.83412
[34]	validation_0-auc:0.89437	validation_1-auc:0.83386
[35]	validation_0-auc:0.89513	validation_1-auc:0.83338
[36]	validation_0-auc:0.89553	validation_1-auc:0.83232
[37]	validation_0-auc:0.89589	validation_1-auc:0.83223
[38]	validation_0-auc:0.89609	validation_1-auc:0.83222
[39]	validation_0-auc:0.89636	validation_1-auc:0.83187
[40]	validation_0-auc:0.89652	validation_1-auc:0.83146
[41]	validation_0-auc:0.89655	validation_1-auc:0.83131
[42]	validation_0-auc:0.89789	validation_1-auc:0.83068
[43]	validation_0-auc:0.89792	validation_1-auc:0.83069
[44]	validation_0-auc:0.89889	validation_1-auc:0.83038
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80901	validation_1-auc:0.80653
[1]	validation_0-auc:0.82713	validation_1-auc:0.82150
[2]	validation_0-auc:0.83227	validation_1-auc:0.82513
[3]	validation_0-auc:0.83319	validation_1-auc:0.82525
[4]	validation_0-auc:0.83786	validation_1-auc:0.82805
[5]	validation_0-auc:0.84104	validation_1-auc:0.82979
[6]	validation_0-auc:0.84432	validation_1-auc:0.82639
[7]	validation_0-auc:0.85301	validation_1-auc:0.83411
[8]	validation_0-auc:0.85882	validation_1-auc:0.83754
[9]	validation_0-auc:0.85838	validation_1-auc:0.83437
[10]	validation_0-auc:0.85606	validation_1-auc:0.83252
[11]	validation_0-auc:0.85677	validation_1-auc:0.83031
[12]	validation_0-auc:0.86256	validation_1-auc:0.83311
[13]	validation_0-auc:0.86712	validation_1-auc:0.83500
[14]	validation_0-auc:0.86926	validation_1-auc:0.83593
[15]	validation_0-auc:0.87031	validation_1-auc:0.83404
[16]	validation_0-auc:0.87119	validation_1-auc:0.83472
[17]	validation_0-auc:0.87276	validation_1-auc:0.83454
[18]	validation_0-auc:0.87365	validation_1-auc:0.83418
[19]	validation_0-auc:0.87495	validation_1-auc:0.83324
[20]	validation_0-auc:0.87498	validation_1-auc:0.83267
[21]	validation_0-auc:0.87527	validation_1-auc:0.83259
[22]	validation_0-auc:0.87572	validation_1-auc:0.83274
[23]	validation_0-auc:0.87659	validation_1-auc:0.83362
[24]	validation_0-auc:0.87704	validation_1-auc:0.83315
[25]	validation_0-auc:0.87743	validation_1-auc:0.83338
[26]	validation_0-auc:0.87762	validation_1-auc:0.83358
[27]	validation_0-auc:0.87818	validation_1-auc:0.83337
[28]	validation_0-auc:0.87822	validation_1-auc:0.83346
[29]	validation_0-auc:0.87890	validation_1-auc:0.83331
[30]	validation_0-auc:0.87903	validation_1-auc:0.83315
[31]	validation_0-auc:0.87993	validation_1-auc:0.83277
[32]	validation_0-auc:0.88063	validation_1-auc:0.83284
[33]	validation_0-auc:0.88096	validation_1-auc:0.83339
[34]	validation_0-auc:0.88210	validation_1-auc:0.83309
[35]	validation_0-auc:0.88207	validation_1-auc:0.83317
[36]	validation_0-auc:0.88224	validation_1-auc:0.83314
[37]	validation_0-auc:0.88240	validation_1-auc:0.83292
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81176	validation_1-auc:0.80947
[1]	validation_0-auc:0.82651	validation_1-auc:0.82286
[2]	validation_0-auc:0.83551	validation_1-auc:0.82712
[3]	validation_0-auc:0.83820	validation_1-auc:0.82810
[4]	validation_0-auc:0.84733	validation_1-auc:0.82952
[5]	validation_0-auc:0.84903	validation_1-auc:0.83409
[6]	validation_0-auc:0.84836	validation_1-auc:0.83191
[7]	validation_0-auc:0.85387	validation_1-auc:0.83486
[8]	validation_0-auc:0.85876	validation_1-auc:0.83709
[9]	validation_0-auc:0.85840	validation_1-auc:0.83730
[10]	validation_0-auc:0.85787	validation_1-auc:0.83417
[11]	validation_0-auc:0.85814	validation_1-auc:0.83328
[12]	validation_0-auc:0.86431	validation_1-auc:0.83684
[13]	validation_0-auc:0.86878	validation_1-auc:0.83901
[14]	validation_0-auc:0.87119	validation_1-auc:0.83987
[15]	validation_0-auc:0.87268	validation_1-auc:0.83789
[16]	validation_0-auc:0.87455	validation_1-auc:0.83903
[17]	validation_0-auc:0.87645	validation_1-auc:0.83873
[18]	validation_0-auc:0.87724	validation_1-auc:0.83908
[19]	validation_0-auc:0.87799	validation_1-auc:0.83966
[20]	validation_0-auc:0.87882	validation_1-auc:0.83958
[21]	validation_0-auc:0.87902	validation_1-auc:0.83960
[22]	validation_0-auc:0.87951	validation_1-auc:0.83985
[23]	validation_0-auc:0.88042	validation_1-auc:0.83903
[24]	validation_0-auc:0.88118	validation_1-auc:0.83938
[25]	validation_0-auc:0.88183	validation_1-auc:0.83941
[26]	validation_0-auc:0.88279	validation_1-auc:0.83943
[27]	validation_0-auc:0.88430	validation_1-auc:0.83947
[28]	validation_0-auc:0.88447	validation_1-auc:0.83972
[29]	validation_0-auc:0.88487	validation_1-auc:0.83903
[30]	validation_0-auc:0.88567	validation_1-auc:0.83956
[31]	validation_0-auc:0.88560	validation_1-auc:0.83942
[32]	validation_0-auc:0.88572	validation_1-auc:0.83903
[33]	validation_0-auc:0.88598	validation_1-auc:0.83902
[34]	validation_0-auc:0.88633	validation_1-auc:0.83882
[35]	validation_0-auc:0.88642	validation_1-auc:0.83890
[36]	validation_0-auc:0.88707	validation_1-auc:0.83877
[37]	validation_0-auc:0.88742	validation_1-auc:0.83862
[38]	validation_0-auc:0.88755	validation_1-auc:0.83835
[39]	validation_0-auc:0.88788	validation_1-auc:0.83760
[40]	validation_0-auc:0.88777	validation_1-auc:0.83781
[41]	validation_0-auc:0.88796	validation_1-auc:0.83789
[42]	validation_0-auc:0.88804	validation_1-auc:0.83796
[43]	validation_0-auc:0.88868	validation_1-auc:0.83769
[44]	validation_0-auc:0.88942	validation_1-auc:0.83764
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81519	validation_1-auc:0.81115
[1]	validation_0-auc:0.83201	validation_1-auc:0.82366
[2]	validation_0-auc:0.83718	validation_1-auc:0.83029
[3]	validation_0-auc:0.84145	validation_1-auc:0.83163
[4]	validation_0-auc:0.84628	validation_1-auc:0.83410
[5]	validation_0-auc:0.84792	validation_1-auc:0.83694
[6]	validation_0-auc:0.84780	validation_1-auc:0.83116
[7]	validation_0-auc:0.85599	validation_1-auc:0.83759
[8]	validation_0-auc:0.85905	validation_1-auc:0.83700
[9]	validation_0-auc:0.85860	validation_1-auc:0.83638
[10]	validation_0-auc:0.85875	validation_1-auc:0.83594
[11]	validation_0-auc:0.85921	validation_1-auc:0.83691
[12]	validation_0-auc:0.86560	validation_1-auc:0.84075
[13]	validation_0-auc:0.86941	validation_1-auc:0.84350
[14]	validation_0-auc:0.87102	validation_1-auc:0.84520
[15]	validation_0-auc:0.87174	validation_1-auc:0.84423
[16]	validation_0-auc:0.87350	validation_1-auc:0.84460
[17]	validation_0-auc:0.87528	validation_1-auc:0.84395
[18]	validation_0-auc:0.87593	validation_1-auc:0.84331
[19]	validation_0-auc:0.87733	validation_1-auc:0.84275
[20]	validation_0-auc:0.87769	validation_1-auc:0.84252
[21]	validation_0-auc:0.87822	validation_1-auc:0.84160
[22]	validation_0-auc:0.87989	validation_1-auc:0.84207
[23]	validation_0-auc:0.88086	validation_1-auc:0.84223
[24]	validation_0-auc:0.88139	validation_1-auc:0.84238
[25]	validation_0-auc:0.88186	validation_1-auc:0.84258
[26]	validation_0-auc:0.88258	validation_1-auc:0.84240
[27]	validation_0-auc:0.88359	validation_1-auc:0.84183
[28]	validation_0-auc:0.88402	validation_1-auc:0.84147
[29]	validation_0-auc:0.88415	validation_1-auc:0.84140
[30]	validation_0-auc:0.88455	validation_1-auc:0.84080
[31]	validation_0-auc:0.88538	validation_1-auc:0.84070
[32]	validation_0-auc:0.88563	validation_1-auc:0.84055
[33]	validation_0-auc:0.88610	validation_1-auc:0.84024
[34]	validation_0-auc:0.88631	validation_1-auc:0.83977
[35]	validation_0-auc:0.88637	validation_1-auc:0.83959
[36]	validation_0-auc:0.88644	validation_1-auc:0.83935
[37]	validation_0-auc:0.88728	validation_1-auc:0.83898
[38]	validation_0-auc:0.88802	validation_1-auc:0.83814
[39]	validation_0-auc:0.88815	validation_1-auc:0.83806
[40]	validation_0-auc:0.88815	validation_1-auc:0.83811
[41]	validation_0-auc:0.88838	validation_1-auc:0.83807
[42]	validation_0-auc:0.88883	validation_1-auc:0.83753
[43]	validation_0-auc:0.88902	validation_1-auc:0.83781
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81007	validation_1-auc:0.80693
[1]	validation_0-auc:0.82137	validation_1-auc:0.81877
[2]	validation_0-auc:0.82976	validation_1-auc:0.82498
[3]	validation_0-auc:0.83120	validation_1-auc:0.82212
[4]	validation_0-auc:0.83382	validation_1-auc:0.82481
[5]	validation_0-auc:0.83696	validation_1-auc:0.82672
[6]	validation_0-auc:0.83976	validation_1-auc:0.83016
[7]	validation_0-auc:0.84177	validation_1-auc:0.83330
[8]	validation_0-auc:0.84585	validation_1-auc:0.83282
[9]	validation_0-auc:0.84984	validation_1-auc:0.83519
[10]	validation_0-auc:0.85146	validation_1-auc:0.83530
[11]	validation_0-auc:0.85113	validation_1-auc:0.83380
[12]	validation_0-auc:0.85502	validation_1-auc:0.83622
[13]	validation_0-auc:0.85797	validation_1-auc:0.83644
[14]	validation_0-auc:0.85990	validation_1-auc:0.83686
[15]	validation_0-auc:0.86114	validation_1-auc:0.83639
[16]	validation_0-auc:0.86158	validation_1-auc:0.83602
[17]	validation_0-auc:0.86285	validation_1-auc:0.83501
[18]	validation_0-auc:0.86405	validation_1-auc:0.83454
[19]	validation_0-auc:0.86498	validation_1-auc:0.83497
[20]	validation_0-auc:0.86595	validation_1-auc:0.83417
[21]	validation_0-auc:0.86757	validation_1-auc:0.83454
[22]	validation_0-auc:0.86810	validation_1-auc:0.83466
[23]	validation_0-auc:0.86830	validation_1-auc:0.83461
[24]	validation_0-auc:0.86859	validation_1-auc:0.83422
[25]	validation_0-auc:0.86941	validation_1-auc:0.83371
[26]	validation_0-auc:0.86986	validation_1-auc:0.83392
[27]	validation_0-auc:0.87053	validation_1-auc:0.83330
[28]	validation_0-auc:0.87105	validation_1-auc:0.83367
[29]	validation_0-auc:0.87111	validation_1-auc:0.83371
[30]	validation_0-auc:0.87152	validation_1-auc:0.83435
[31]	validation_0-auc:0.87181	validation_1-auc:0.83437
[32]	validation_0-auc:0.87286	validation_1-auc:0.83459
[33]	validation_0-auc:0.87304	validation_1-auc:0.83470
[34]	validation_0-auc:0.87347	validation_1-auc:0.83407
[35]	validation_0-auc:0.87393	validation_1-auc:0.83319
[36]	validation_0-auc:0.87464	validation_1-auc:0.83300
[37]	validation_0-auc:0.87469	validation_1-auc:0.83311
[38]	validation_0-auc:0.87502	validation_1-auc:0.83281
[39]	validation_0-auc:0.87594	validation_1-auc:0.83273
[40]	validation_0-auc:0.87620	validation_1-auc:0.83299
[41]	validation_0-auc:0.87747	validation_1-auc:0.83274
[42]	validation_0-auc:0.87754	validation_1-auc:0.83254
[43]	validation_0-auc:0.87846	validation_1-auc:0.83286
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.80863	validation_1-auc:0.80010
[1]	validation_0-auc:0.82349	validation_1-auc:0.81717
[2]	validation_0-auc:0.82654	validation_1-auc:0.81737
[3]	validation_0-auc:0.82988	validation_1-auc:0.82281
[4]	validation_0-auc:0.83570	validation_1-auc:0.82554
[5]	validation_0-auc:0.83917	validation_1-auc:0.82930
[6]	validation_0-auc:0.84492	validation_1-auc:0.83396
[7]	validation_0-auc:0.84657	validation_1-auc:0.83569
[8]	validation_0-auc:0.84837	validation_1-auc:0.83476
[9]	validation_0-auc:0.85010	validation_1-auc:0.83841
[10]	validation_0-auc:0.85017	validation_1-auc:0.83887
[11]	validation_0-auc:0.85091	validation_1-auc:0.83723
[12]	validation_0-auc:0.85584	validation_1-auc:0.83976
[13]	validation_0-auc:0.85900	validation_1-auc:0.84063
[14]	validation_0-auc:0.86059	validation_1-auc:0.84054
[15]	validation_0-auc:0.86167	validation_1-auc:0.84086
[16]	validation_0-auc:0.86303	validation_1-auc:0.84085
[17]	validation_0-auc:0.86383	validation_1-auc:0.83947
[18]	validation_0-auc:0.86462	validation_1-auc:0.83971
[19]	validation_0-auc:0.86559	validation_1-auc:0.84059
[20]	validation_0-auc:0.86650	validation_1-auc:0.83981
[21]	validation_0-auc:0.86762	validation_1-auc:0.84030
[22]	validation_0-auc:0.86865	validation_1-auc:0.84050
[23]	validation_0-auc:0.86916	validation_1-auc:0.83978
[24]	validation_0-auc:0.86953	validation_1-auc:0.84033
[25]	validation_0-auc:0.86992	validation_1-auc:0.84000
[26]	validation_0-auc:0.87005	validation_1-auc:0.83998
[27]	validation_0-auc:0.87115	validation_1-auc:0.83964
[28]	validation_0-auc:0.87205	validation_1-auc:0.83972
[29]	validation_0-auc:0.87328	validation_1-auc:0.83984
[30]	validation_0-auc:0.87360	validation_1-auc:0.83929
[31]	validation_0-auc:0.87367	validation_1-auc:0.83938
[32]	validation_0-auc:0.87441	validation_1-auc:0.83918
[33]	validation_0-auc:0.87490	validation_1-auc:0.83990
[34]	validation_0-auc:0.87594	validation_1-auc:0.84011
[35]	validation_0-auc:0.87618	validation_1-auc:0.83988
[36]	validation_0-auc:0.87648	validation_1-auc:0.83991
[37]	validation_0-auc:0.87657	validation_1-auc:0.83991
[38]	validation_0-auc:0.87676	validation_1-auc:0.83987
[39]	validation_0-auc:0.87696	validation_1-auc:0.83973
[40]	validation_0-auc:0.87705	validation_1-auc:0.83990
[41]	validation_0-auc:0.87724	validation_1-auc:0.83941
[42]	validation_0-auc:0.87781	validation_1-auc:0.83934
[43]	validation_0-auc:0.87810	validation_1-auc:0.83924
[44]	validation_0-auc:0.87848	validation_1-auc:0.83882
[45]	validation_0-auc:0.87863	validation_1-auc:0.83888
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.82005	validation_1-auc:0.81815
[1]	validation_0-auc:0.82547	validation_1-auc:0.82159
[2]	validation_0-auc:0.83019	validation_1-auc:0.82631
[3]	validation_0-auc:0.83230	validation_1-auc:0.82660
[4]	validation_0-auc:0.83488	validation_1-auc:0.82988
[5]	validation_0-auc:0.83888	validation_1-auc:0.83262
[6]	validation_0-auc:0.84242	validation_1-auc:0.83408
[7]	validation_0-auc:0.84581	validation_1-auc:0.83560
[8]	validation_0-auc:0.84775	validation_1-auc:0.83617
[9]	validation_0-auc:0.84989	validation_1-auc:0.83746
[10]	validation_0-auc:0.85052	validation_1-auc:0.83816
[11]	validation_0-auc:0.84982	validation_1-auc:0.83603
[12]	validation_0-auc:0.85408	validation_1-auc:0.83825
[13]	validation_0-auc:0.85547	validation_1-auc:0.83955
[14]	validation_0-auc:0.85818	validation_1-auc:0.84292
[15]	validation_0-auc:0.85990	validation_1-auc:0.84361
[16]	validation_0-auc:0.86142	validation_1-auc:0.84287
[17]	validation_0-auc:0.86247	validation_1-auc:0.84280
[18]	validation_0-auc:0.86276	validation_1-auc:0.84297
[19]	validation_0-auc:0.86368	validation_1-auc:0.84290
[20]	validation_0-auc:0.86488	validation_1-auc:0.84279
[21]	validation_0-auc:0.86540	validation_1-auc:0.84307
[22]	validation_0-auc:0.86631	validation_1-auc:0.84285
[23]	validation_0-auc:0.86687	validation_1-auc:0.84289
[24]	validation_0-auc:0.86777	validation_1-auc:0.84289
[25]	validation_0-auc:0.86830	validation_1-auc:0.84279
[26]	validation_0-auc:0.86862	validation_1-auc:0.84237
[27]	validation_0-auc:0.87011	validation_1-auc:0.84232
[28]	validation_0-auc:0.87063	validation_1-auc:0.84224
[29]	validation_0-auc:0.87063	validation_1-auc:0.84199
[30]	validation_0-auc:0.87108	validation_1-auc:0.84246
[31]	validation_0-auc:0.87190	validation_1-auc:0.84252
[32]	validation_0-auc:0.87275	validation_1-auc:0.84147
[33]	validation_0-auc:0.87302	validation_1-auc:0.84149
[34]	validation_0-auc:0.87350	validation_1-auc:0.84118
[35]	validation_0-auc:0.87371	validation_1-auc:0.84115
[36]	validation_0-auc:0.87407	validation_1-auc:0.84113
[37]	validation_0-auc:0.87475	validation_1-auc:0.84038
[38]	validation_0-auc:0.87529	validation_1-auc:0.84009
[39]	validation_0-auc:0.87540	validation_1-auc:0.83988
[40]	validation_0-auc:0.87555	validation_1-auc:0.83984
[41]	validation_0-auc:0.87579	validation_1-auc:0.83991
[42]	validation_0-auc:0.87630	validation_1-auc:0.83942
[43]	validation_0-auc:0.87664	validation_1-auc:0.83926
[44]	validation_0-auc:0.87713	validation_1-auc:0.83916
[45]	validation_0-auc:0.87763	validation_1-auc:0.83868
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81105	validation_1-auc:0.80637
[1]	validation_0-auc:0.82008	validation_1-auc:0.81881
[2]	validation_0-auc:0.82922	validation_1-auc:0.82532
[3]	validation_0-auc:0.83159	validation_1-auc:0.82594
[4]	validation_0-auc:0.83378	validation_1-auc:0.82618
[5]	validation_0-auc:0.83671	validation_1-auc:0.82887
[6]	validation_0-auc:0.84111	validation_1-auc:0.83302
[7]	validation_0-auc:0.84227	validation_1-auc:0.83380
[8]	validation_0-auc:0.84422	validation_1-auc:0.83346
[9]	validation_0-auc:0.84742	validation_1-auc:0.83581
[10]	validation_0-auc:0.84984	validation_1-auc:0.83563
[11]	validation_0-auc:0.84933	validation_1-auc:0.83344
[12]	validation_0-auc:0.85285	validation_1-auc:0.83653
[13]	validation_0-auc:0.85494	validation_1-auc:0.83796
[14]	validation_0-auc:0.85653	validation_1-auc:0.83880
[15]	validation_0-auc:0.85803	validation_1-auc:0.83841
[16]	validation_0-auc:0.85922	validation_1-auc:0.83773
[17]	validation_0-auc:0.85983	validation_1-auc:0.83709
[18]	validation_0-auc:0.86162	validation_1-auc:0.83622
[19]	validation_0-auc:0.86232	validation_1-auc:0.83513
[20]	validation_0-auc:0.86287	validation_1-auc:0.83518
[21]	validation_0-auc:0.86374	validation_1-auc:0.83543
[22]	validation_0-auc:0.86416	validation_1-auc:0.83540
[23]	validation_0-auc:0.86459	validation_1-auc:0.83510
[24]	validation_0-auc:0.86482	validation_1-auc:0.83477
[25]	validation_0-auc:0.86526	validation_1-auc:0.83484
[26]	validation_0-auc:0.86545	validation_1-auc:0.83473
[27]	validation_0-auc:0.86568	validation_1-auc:0.83481
[28]	validation_0-auc:0.86578	validation_1-auc:0.83485
[29]	validation_0-auc:0.86654	validation_1-auc:0.83501
[30]	validation_0-auc:0.86666	validation_1-auc:0.83465
[31]	validation_0-auc:0.86790	validation_1-auc:0.83486
[32]	validation_0-auc:0.86802	validation_1-auc:0.83488
[33]	validation_0-auc:0.86809	validation_1-auc:0.83473
[34]	validation_0-auc:0.86821	validation_1-auc:0.83483
[35]	validation_0-auc:0.86828	validation_1-auc:0.83508
[36]	validation_0-auc:0.86861	validation_1-auc:0.83435
[37]	validation_0-auc:0.86866	validation_1-auc:0.83425
[38]	validation_0-auc:0.86892	validation_1-auc:0.83451
[39]	validation_0-auc:0.86913	validation_1-auc:0.83425
[40]	validation_0-auc:0.86939	validation_1-auc:0.83430
[41]	validation_0-auc:0.86940	validation_1-auc:0.83443
[42]	validation_0-auc:0.86949	validation_1-auc:0.83436
[43]	validation_0-auc:0.87013	validation_1-auc:0.83441
[44]	validation_0-auc:0.87059	validation_1-auc:0.83365
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81067	validation_1-auc:0.81109
[1]	validation_0-auc:0.82045	validation_1-auc:0.81627
[2]	validation_0-auc:0.82760	validation_1-auc:0.82116
[3]	validation_0-auc:0.82925	validation_1-auc:0.81730
[4]	validation_0-auc:0.83628	validation_1-auc:0.82554
[5]	validation_0-auc:0.83889	validation_1-auc:0.82992
[6]	validation_0-auc:0.84258	validation_1-auc:0.83304
[7]	validation_0-auc:0.84515	validation_1-auc:0.83327
[8]	validation_0-auc:0.84797	validation_1-auc:0.83479
[9]	validation_0-auc:0.84982	validation_1-auc:0.83737
[10]	validation_0-auc:0.84996	validation_1-auc:0.83746
[11]	validation_0-auc:0.84929	validation_1-auc:0.83715
[12]	validation_0-auc:0.85506	validation_1-auc:0.83957
[13]	validation_0-auc:0.85817	validation_1-auc:0.84131
[14]	validation_0-auc:0.85945	validation_1-auc:0.84041
[15]	validation_0-auc:0.86040	validation_1-auc:0.83984
[16]	validation_0-auc:0.86127	validation_1-auc:0.83954
[17]	validation_0-auc:0.86170	validation_1-auc:0.83947
[18]	validation_0-auc:0.86276	validation_1-auc:0.83945
[19]	validation_0-auc:0.86327	validation_1-auc:0.84019
[20]	validation_0-auc:0.86381	validation_1-auc:0.84075
[21]	validation_0-auc:0.86454	validation_1-auc:0.84078
[22]	validation_0-auc:0.86530	validation_1-auc:0.84164
[23]	validation_0-auc:0.86598	validation_1-auc:0.84128
[24]	validation_0-auc:0.86656	validation_1-auc:0.84078
[25]	validation_0-auc:0.86721	validation_1-auc:0.84069
[26]	validation_0-auc:0.86745	validation_1-auc:0.84066
[27]	validation_0-auc:0.86808	validation_1-auc:0.84017
[28]	validation_0-auc:0.86914	validation_1-auc:0.84027
[29]	validation_0-auc:0.86951	validation_1-auc:0.84014
[30]	validation_0-auc:0.86972	validation_1-auc:0.84016
[31]	validation_0-auc:0.86996	validation_1-auc:0.83992
[32]	validation_0-auc:0.87072	validation_1-auc:0.84001
[33]	validation_0-auc:0.87090	validation_1-auc:0.83997
[34]	validation_0-auc:0.87111	validation_1-auc:0.83969
[35]	validation_0-auc:0.87145	validation_1-auc:0.83964
[36]	validation_0-auc:0.87215	validation_1-auc:0.84006
[37]	validation_0-auc:0.87242	validation_1-auc:0.83987
[38]	validation_0-auc:0.87262	validation_1-auc:0.83995
[39]	validation_0-auc:0.87270	validation_1-auc:0.84021
[40]	validation_0-auc:0.87275	validation_1-auc:0.84066
[41]	validation_0-auc:0.87323	validation_1-auc:0.84095
[42]	validation_0-auc:0.87372	validation_1-auc:0.84074
[43]	validation_0-auc:0.87433	validation_1-auc:0.84057
[44]	validation_0-auc:0.87440	validation_1-auc:0.84028
[45]	validation_0-auc:0.87511	validation_1-auc:0.84011
[46]	validation_0-auc:0.87553	validation_1-auc:0.83972
[47]	validation_0-auc:0.87606	validation_1-auc:0.83880
[48]	validation_0-auc:0.87630	validation_1-auc:0.83876
[49]	validation_0-auc:0.87629	validation_1-auc:0.83900
[50]	validation_0-auc:0.87637	validation_1-auc:0.83902
[51]	validation_0-auc:0.87649	validation_1-auc:0.83930
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81835	validation_1-auc:0.81691
[1]	validation_0-auc:0.82862	validation_1-auc:0.82346
[2]	validation_0-auc:0.83280	validation_1-auc:0.82893
[3]	validation_0-auc:0.83563	validation_1-auc:0.82931
[4]	validation_0-auc:0.83780	validation_1-auc:0.83200
[5]	validation_0-auc:0.83975	validation_1-auc:0.83280
[6]	validation_0-auc:0.84205	validation_1-auc:0.83374
[7]	validation_0-auc:0.84453	validation_1-auc:0.83256
[8]	validation_0-auc:0.84638	validation_1-auc:0.83384
[9]	validation_0-auc:0.84986	validation_1-auc:0.83670
[10]	validation_0-auc:0.85058	validation_1-auc:0.83825
[11]	validation_0-auc:0.84986	validation_1-auc:0.83646
[12]	validation_0-auc:0.85321	validation_1-auc:0.83744
[13]	validation_0-auc:0.85478	validation_1-auc:0.83942
[14]	validation_0-auc:0.85613	validation_1-auc:0.84091
[15]	validation_0-auc:0.85709	validation_1-auc:0.84170
[16]	validation_0-auc:0.85891	validation_1-auc:0.84239
[17]	validation_0-auc:0.86023	validation_1-auc:0.84215
[18]	validation_0-auc:0.86146	validation_1-auc:0.84247
[19]	validation_0-auc:0.86202	validation_1-auc:0.84237
[20]	validation_0-auc:0.86268	validation_1-auc:0.84152
[21]	validation_0-auc:0.86342	validation_1-auc:0.84132
[22]	validation_0-auc:0.86492	validation_1-auc:0.84044
[23]	validation_0-auc:0.86602	validation_1-auc:0.84073
[24]	validation_0-auc:0.86688	validation_1-auc:0.84082
[25]	validation_0-auc:0.86779	validation_1-auc:0.84074
[26]	validation_0-auc:0.86849	validation_1-auc:0.84076
[27]	validation_0-auc:0.86910	validation_1-auc:0.84096
[28]	validation_0-auc:0.86931	validation_1-auc:0.84113
[29]	validation_0-auc:0.86974	validation_1-auc:0.84187
[30]	validation_0-auc:0.87070	validation_1-auc:0.84167
[31]	validation_0-auc:0.87108	validation_1-auc:0.84174
[32]	validation_0-auc:0.87123	validation_1-auc:0.84166
[33]	validation_0-auc:0.87153	validation_1-auc:0.84142
[34]	validation_0-auc:0.87214	validation_1-auc:0.84153
[35]	validation_0-auc:0.87289	validation_1-auc:0.84147
[36]	validation_0-auc:0.87329	validation_1-auc:0.84136
[37]	validation_0-auc:0.87345	validation_1-auc:0.84116
[38]	validation_0-auc:0.87355	validation_1-auc:0.84114
[39]	validation_0-auc:0.87411	validation_1-auc:0.84087
[40]	validation_0-auc:0.87419	validation_1-auc:0.84088
[41]	validation_0-auc:0.87540	validation_1-auc:0.84065
[42]	validation_0-auc:0.87576	validation_1-auc:0.84078
[43]	validation_0-auc:0.87598	validation_1-auc:0.84097
[44]	validation_0-auc:0.87646	validation_1-auc:0.84047
[45]	validation_0-auc:0.87666	validation_1-auc:0.84048
[46]	validation_0-auc:0.87670	validation_1-auc:0.84016
[47]	validation_0-auc:0.87719	validation_1-auc:0.84000
[48]	validation_0-auc:0.87796	validation_1-auc:0.83922
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
[0]	validation_0-auc:0.81685	validation_1-auc:0.81075
[1]	validation_0-auc:0.82791	validation_1-auc:0.82283
[2]	validation_0-auc:0.83537	validation_1-auc:0.82615
[3]	validation_0-auc:0.83996	validation_1-auc:0.82712
[4]	validation_0-auc:0.84558	validation_1-auc:0.82791
[5]	validation_0-auc:0.84781	validation_1-auc:0.82977
[6]	validation_0-auc:0.85151	validation_1-auc:0.83373
[7]	validation_0-auc:0.85510	validation_1-auc:0.83444
[8]	validation_0-auc:0.85998	validation_1-auc:0.83601
[9]	validation_0-auc:0.86238	validation_1-auc:0.83804
[10]	validation_0-auc:0.86435	validation_1-auc:0.83584
[11]	validation_0-auc:0.86583	validation_1-auc:0.83093
[12]	validation_0-auc:0.87079	validation_1-auc:0.83235
[13]	validation_0-auc:0.87454	validation_1-auc:0.83253
[14]	validation_0-auc:0.87642	validation_1-auc:0.83254
[15]	validation_0-auc:0.87856	validation_1-auc:0.83218
[16]	validation_0-auc:0.87973	validation_1-auc:0.83171
[17]	validation_0-auc:0.88122	validation_1-auc:0.83115
[18]	validation_0-auc:0.88256	validation_1-auc:0.83119
[19]	validation_0-auc:0.88330	validation_1-auc:0.83139
[20]	validation_0-auc:0.88408	validation_1-auc:0.83082
[21]	validation_0-auc:0.88505	validation_1-auc:0.83044
[22]	validation_0-auc:0.88631	validation_1-auc:0.83025
[23]	validation_0-auc:0.88670	validation_1-auc:0.83047
[24]	validation_0-auc:0.88740	validation_1-auc:0.82903
[25]	validation_0-auc:0.88770	validation_1-auc:0.82895
[26]	validation_0-auc:0.88793	validation_1-auc:0.82913
[27]	validation_0-auc:0.88808	validation_1-auc:0.82881
[28]	validation_0-auc:0.88830	validation_1-auc:0.82901
[29]	validation_0-auc:0.88834	validation_1-auc:0.82910
[30]	validation_0-auc:0.88894	validation_1-auc:0.82854
[31]	validation_0-auc:0.88898	validation_1-auc:0.82859
[32]	validation_0-auc:0.88914	validation_1-auc:0.82837
[33]	validation_0-auc:0.88935	validation_1-auc:0.82847
[34]	validation_0-auc:0.89037	validation_1-auc:0.82891
[35]	validation_0-auc:0.89097	validation_1-auc:0.82869
[36]	validation_0-auc:0.89158	validation_1-auc:0.82814
[37]	validation_0-auc:0.89167	validation_1-auc:0.82822
[38]	validation_0-auc:0.89184	validation_1-auc:0.82764
[39]	validation_0-auc:0.89187	validation_1-auc:0.82734
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
  warnings.warn(label_encoder_deprecation_msg, UserWarning)
C:\Users\woo\anaconda3\envs\py39r41\lib\site-packages\xgboost\data.py:262: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):